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Computational Storage: History
§ Idea dates back to mainframes

§ First Channel I/O processors in IBM 709, 1957

§ Network Attached Secure Disks (NASD)
§ Research project at CMU, 1997-2001

§ Encryption, compression, data management (“active storage”)
§ SCSI T10 Object Storage Device (OSD) v1 and v2 standards

§ Only offloads part of file system functionality

§ Ceph
§ Research project at UC Santa Cruz, 2005-2007
§ Designed for OSDs
§ Broke OSD standard with P2P communication for failure management
§ Implemented for hosts, not devices

§ SkyhookDM Plugin for Ceph 
§ CROSS incubator project at UC Santa Cruz since 2016
§ Offloads data management of tabular data
§ Turns Ceph into an Apache Arrow-native store (since 2020)

§ Computational Storage
§ SNIA Technical Working Group (TWG) since 2019
§ Focus on storage devices

§ Eusocial Storage Devices 
§ CROSS research project at UC Santa Cruz since 2017
§ P2P communication, specialization into “castes”
§ I/O stack flexible about offloading: pushdown, pushback
§ Leverages Smart NICs



Computational Storage: Why now?

§ Storage devices are getting very fast
§ CPU/DRAM/PCIe cannot keep up
§ CPU/DRAM/PCIe tax for storage 

increases
§ Disaggregation in data centers

§ Multi-tenant workloads are too diverse 
for any kind of packaging

§ Better to dynamically assemble systems 
from parts

§ Storage fabrics are expensive
§ NVMe requires host kernel resources
§ Ethernet is much cheaper and keeps 

getting faster
§ New IP protocols are getting very fast: 

e.g. HTTP/3



Programmable Storage
A programmable storage system or device exposes internal subsystem 

abstractions as “interfaces” to enable the creation of higher-level 
services via composition.

Collaborators: Jeff LeFevre (UCSC), Ivo Jimenez (UCSC), Esmaeil Mirvakili (UCSC), Jayjeet 
Chakraborty (NIT), Aditi Gupta (NIT), Aaron Chu (UCSC), Xiongfeng Song (Rice)



Programmable Storage
Computational Storage + Programmability

For storage systems:
• Storage has to be correct, otherwise data loss
• Correct software takes time 
• Reuse as much as possible à Composability
• Composability important for optimization

For storage devices:
• Storage device industry has very low margins
• Products must fit existing market and have a 

minimum life time
• Programmable devices to reduce market risk
• Greater opportunity for innovation



tree -d
ceph/src

What is SkyhookDM?

SkyhookDM

An object “class” for Ceph
• No upstream modifications required
• Inherits Ceph’s properties now and 

in the future
• Can use all other object extensions
• Not a database

Storing tabular data in objects
• Using

Object read/write operations
• Select, Project, Aggregate
• Create, append rows/columns
• Indexing
• Intra- & inter-object transformations

Growth of mainline
object classes
2010-2018



• Client maps tables to sets of objects
• Map is also stored in objects

• Client API designed for plugins
• Allows pushdown to scale out tabular data 

operations
• Reduces data movement (CPU cycles!)

• IRIS-HEP
• Connting to Coffea and ServiceX

• CROSS
• Plugins for Postgres, Spark, Pandas, HDF5
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How does SkyhookDM fit into DOMA?
ServiceX Plugin and Coffea Processor:

ServiceX creates one table per transformation request
• Partitions table and assigns transformer to each partition
• Each transformer creates and writes an object row-by-row
• ServiceX provides table metadata, incl. partitioning to SkyhookDM

Table names are arbitrary strings, globally unique
• Column names are arbitrary strings, unique within table
• Rows have a key, unique within table

Coffea Processor:
SkyhookDM can create views across arbitrary sets of tables

• View names are arbitrary strings, globally unique
• Views can be either by reference or by copy (i.e. materialized)
• SkyhookDM stitches views on a best-effort basis
• Key mappers can map one kind of key to another and can be stored

Design allows evolution of higher-level automation.
• Table naming conventions might indicate compatibility to other tables
• View naming conventions might allow automatic reuse of materialized 

views
• Column naming conventions might allow versioning
• Naming convention might allow automatic garbage collection
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